

At some point in your life you must have wondered about your inherited physical characteristics. Why is your hair dark or light, curly or straight? Do your eyes look like your mother's, your father's, or like neither of them? How do your eyes and hair, your height, and the color of your skin compare to those of your parents and your siblings? What made you female or male? People have asked these kinds of questions for thousands of years, but we only began to get some answers in the mid-1800s, when Gregor Mendel started to experiment with inheritance in plants in his abbey garden. This chapter concerns the principles and patterns of inheritance.

Organizing Your Knowledge

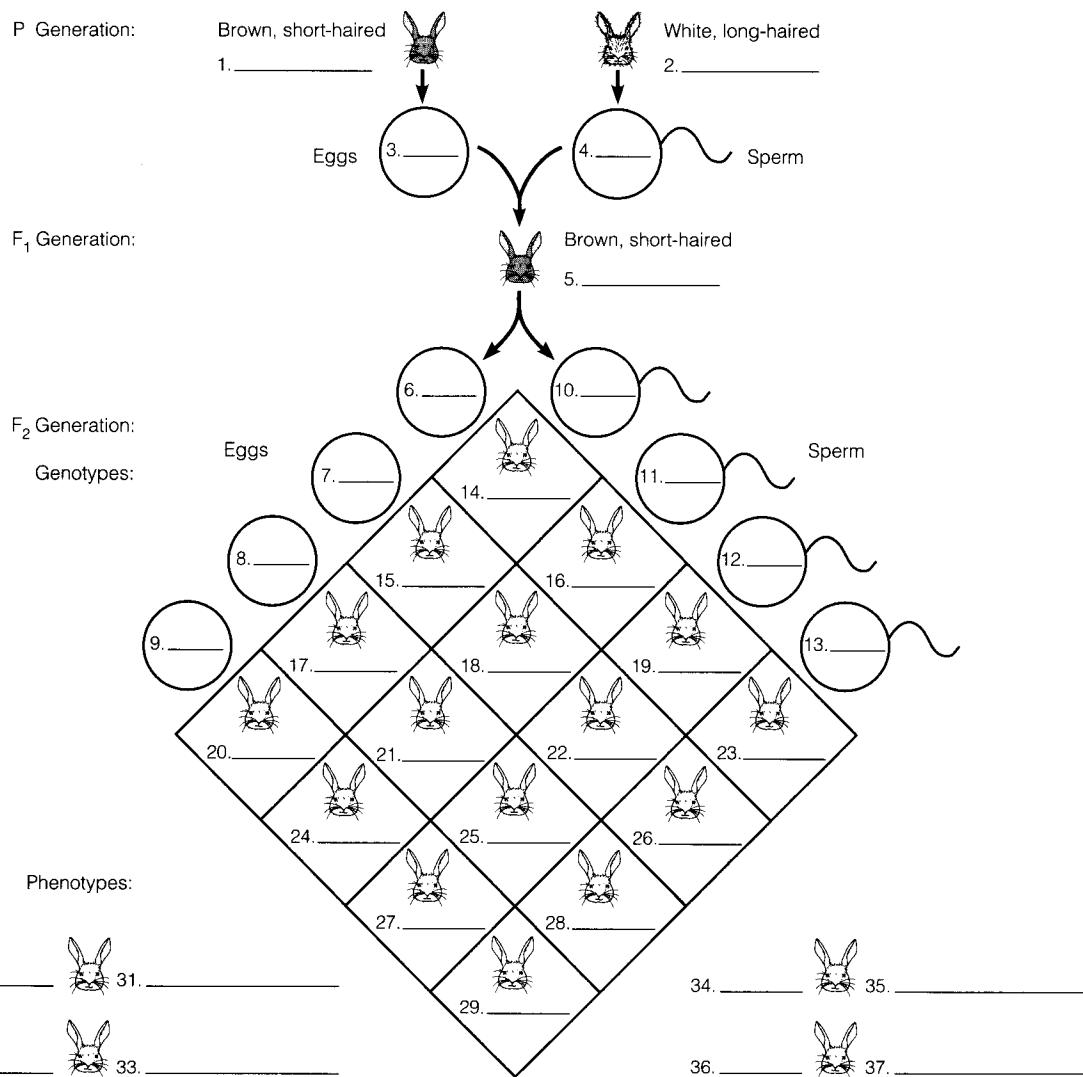
Exercise 1 (Modules 9.1 – 9.4)

Web/CD Activity 9A Monohybrid Cross

These modules discuss the basic principles of heredity and introduce the vocabulary of genetics. Read the modules carefully, and then practice using the vocabulary by matching each phrase on the right with a word or phrase on the left.

A. Allele	_____ 1. A unit that determines heritable characteristics
B. Homozygous	_____ 2. Organisms that always produce offspring identical to parents
C. Hybrid	_____ 3. The offspring of two different varieties
D. Genotype	_____ 4. When two alleles of a pair are different, the one that is masked
E. Segregation	_____ 5. An incorrect idea that acquired characteristics are passed on
F. F_2 generation	_____ 6. Parent organisms that are mated
G. True-breeding	_____ 7. A diagram that shows possible combinations of gametes
H. Heterozygous	_____ 8. A breeding experiment that uses parents different in one characteristic
I. Self-fertilization	_____ 9. One of the alternative forms of a gene for a characteristic
J. Dominant	_____ 10. Relative numbers of organisms with various characteristics
K. P generation	_____ 11. An organism that has two different alleles for a characteristic
L. Monohybrid cross	_____ 12. Old idea that hereditary materials from parents mix in offspring
M. Wild type	_____ 13. An organism's genetic makeup
N. Phenotype	_____ 14. Separation of allele pairs that occurs during gamete formation
O. Cross	_____ 15. Fertilization of a plant by pollen from a different plant
P. F_1 generation	_____ 16. An organism that has two identical alleles for a characteristic
Q. Recessive	_____ 17. Offspring of the P generation
R. Homologous chromosomes	_____ 18. A characteristic most commonly found in nature
S. Gene	_____ 19. What an organism looks like; its expressed traits
T. Phenotypic ratio	_____ 20. Offspring of the F_1 generation
U. Pangenesis	_____ 21. When pollen fertilizes eggs from the same flower
V. Cross-fertilization	_____ 22. A hybridization
W. Punnett square	_____ 23. When two alleles of a pair are different, the one expressed
X. Blending	_____ 24. Where genes for a certain trait are located

Exercise 2 (Modules 9.3 – 9.4)**Web/CD Activity 9A Monohybrid Cross**


Test your knowledge of Mendel's principles by answering the following questions. You may want to test your ideas on scratch paper.

1. A pea plant with green pods is crossed with a plant with yellow pods. All their offspring have green pods.
 - a. Which allele is dominant? Which allele is recessive?
 - b. Using letters, what is the genotype of the green parent? The yellow parent?
 - c. What are the genotypes of the offspring?
2. F_1 pea plants from the above cross are crossed. Use a Punnett square to figure out the genotypic and phenotypic ratios in the F_2 generation.
 - a. Genotypic ratios:
 - b. Phenotypic ratios:
3. Two black mice mate. Six of their offspring are black and two are white.
 - a. What are the genotypes of the parents?
 - b. For which offspring are you sure of the genotypes?

Exercise 3 (Module 9.5)**Web/CD Activity 9B Dihybrid Cross**

Mendel studied the inheritance of two characteristics at once and found that each pair of alleles segregates independently during the formation of gametes. In other words, if a tall pea plant with purple flowers is crossed with a short plant with white flowers, some of their descendants can be tall with white flowers. The tall and purple alleles do not have to stick together—they are independent.

So far, the textbook has discussed inheritance in peas and dogs. Just to be different, let's look at a genetic cross involving rabbits. In rabbits, the allele for brown coat is dominant, the allele for white coat recessive. The allele for short fur is dominant, the allele for long fur recessive. Imagine mating a true-breeding brown, short-haired rabbit with a white, long-haired rabbit. Using Module 9.5 as a model, write the genotypes of rabbits and gametes in the P, F₁, and F₂ generations in the blanks in the Punnett square. You may want to modify the drawings to show the phenotypes of the rabbits in the F₂ generation. Then use the Punnett square to figure out the phenotypic ratios in the F₂ generation—the proportion of rabbits that you can expect to be brown and short-haired, brown and long-haired, white and short-haired, and white and long-haired. Write their phenotype and their proportions in the blanks at the bottom.

Exercise 4 (Module 9.6)

After reading this module on testcrosses, test your understanding by answering the following questions.

1. Recall that brown coat color in rabbits is dominant and white color is recessive. Suppose you have a group of rabbits—some brown and some white.
 - a. For which phenotype(s) do you know the genotype(s)?
 - b. For which phenotype(s) are you unsure of the genotype(s)?
2. Using *B* and *b* to symbolize the brown and white alleles:
 - a. What are the possible genotypes of a white rabbit in your group?
 - b. What are the possible genotypes of a brown rabbit?
3. Suppose you wanted to find out the genotype of a brown rabbit. What color rabbit would you mate it with?
4. A brown buck (male) is mated with a white doe (female). In their litter of 11 young, six are white and five are brown. Using a Punnett square to check your answer, what is the genotype of the buck?
5. Use a Punnett square to figure out the ratio of brown and white offspring that would have been produced by the above mating if the brown buck had been homozygous.
6. If half the offspring from a testcross are of the dominant phenotype and half are of the recessive phenotype, is the parent of the dominant phenotype (but unknown genotype) homozygous or heterozygous?
7. If all the offspring from a testcross are of the dominant phenotype, is the parent with the dominant phenotype (but unknown genotype) homozygous or heterozygous?

Exercise 5 (Module 9.7)**Web/CD Activity 9C Gregor's Garden**

The rules of probability can be used to predict the flip of a coin, the drawing of a card from a deck, or the roll of a pair of dice. They also govern segregation and recombination of genes. Read Module 9.7 carefully, and then fill in the blanks below.

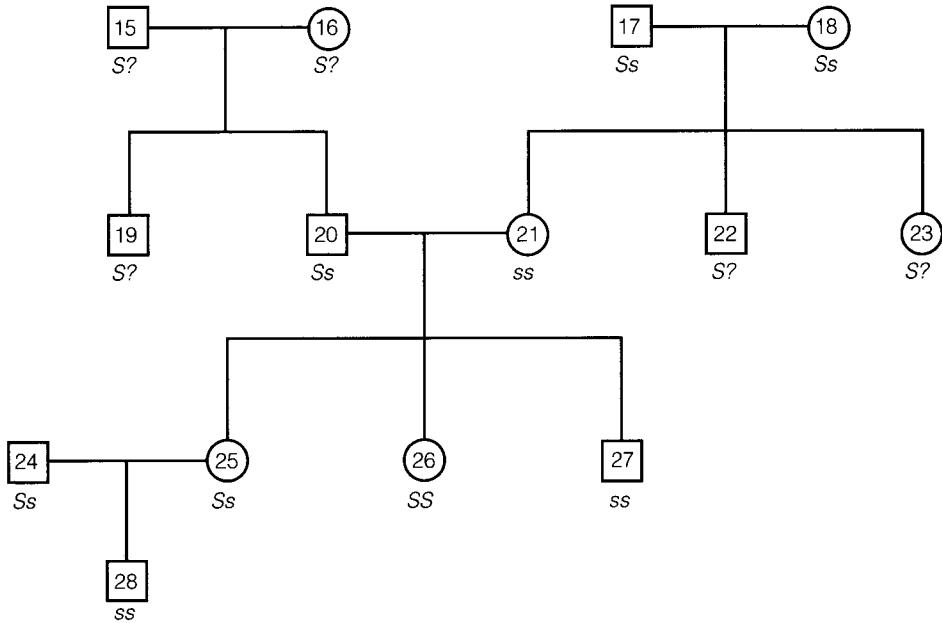
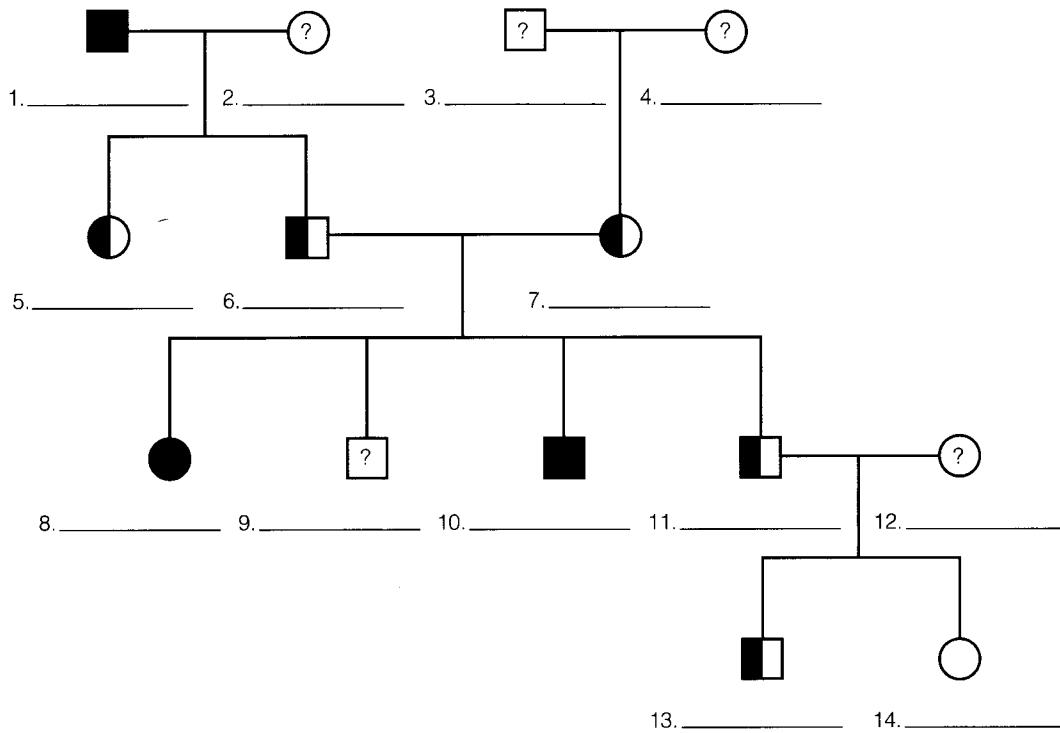
The probability scale ranges from ¹ ____ (an event that is certain not to occur) to ² ____ (an event that is certain to occur). The probabilities of all possible outcomes for an event must add up to ³ _____. Imagine rolling a pair of dice, one die at a time. Each of the six faces of a die has a different number of dots, from one to six. If you roll a die, the probability of rolling a one is ⁴ _____. The probability of rolling any number other than one is ⁵ _____. The outcome of a given roll is unaffected by what has happened on previous rolls. In other words, each roll is a(n) ⁶ _____ event.

If you roll two dice simultaneously, what is the probability of “snake eyes” (both ones)? The roll of each die is an independent event. The probability of such a compound event (both dice coming up ones) is the ⁷ _____ of the separate probabilities of the independent events. Therefore, the probability of rolling two ones is ⁸ ___ \times ⁹ ___ = ¹⁰ _____. This is called the rule of ¹¹ _____.

This rule also governs the combination of genes in genetic crosses. The probability that a heterozygous (*Pp*) individual will produce an egg containing a *p* allele is ¹² _____. The probability of producing a *P* egg is also ¹³ _____. If two heterozygous individuals are mated, what is the probability of a particular offspring being ¹⁴ _____ recessive (*pp*)? The probability of producing a *p* egg is $\frac{1}{2}$. The probability of producing a *p* sperm is also $\frac{1}{2}$. The production of egg and sperm are independent events, so to calculate their combined probability we use the rule of ¹⁵ _____. Thus the chance that two *p* alleles will come together at fertilization to produce a *pp* offspring is ¹⁶ ___ \times ¹⁷ ___ = ¹⁸ _____.

Back to the dice for a moment. What is the probability that a roll of two dice will produce a three and a four? There are two different ways this can occur. One die can come up a three and the other a four, or one can come up a four and the other a three. The probability of the first combination is $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. The probability of the second is also $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$. According to the rule of ¹⁹ _____, the probability of an event that can occur in two or more alternative ways is the ²⁰ _____ of the separate probabilities of the different ways. The probability of rolling a three and a four is therefore ²¹ ___ + ²² ___ = ²³ _____.

Similarly, what is the probability that a particular offspring of two heterozygous parents will itself be heterozygous? The probability of the mother producing a *P* egg is ²⁴ _____. The probability of the father producing a *p* sperm is also ²⁵ _____. Therefore, the probability of a *P* egg and a *p* sperm joining at fertilization is ²⁶ ___ \times ²⁷ ___ = ²⁸ _____. Or a *p* egg and a *P* sperm could join. The probability of this occurring is also ²⁹ _____. According to the rule of addition, the probability of an event that can occur in two alternative ways is the sum of the separate probabilities. Therefore, the probability of heterozygous parents producing a heterozygous offspring is ³⁰ ___ + ³¹ ___ = ³² _____.



Exercise 6 (Module 9.8)

After you read this module, use the information in the illustration to solve the following problems. You will probably want to work out Punnett squares on scratch paper.

1. A man and woman, both without freckles, have four children. How many of the children would you expect to have freckles?
2. Both Fred and Wilma have widow’s peaks. Their daughter Shirley has a straight hairline. What are Fred and Wilma’s genotypes?
3. A man and woman both have free earlobes, but their daughter has attached earlobes. What is the probability that their next child will have attached earlobes?

Exercise 7 (Module 9.8)

Family trees called pedigrees are used to trace the inheritance of human genes. The two pedigrees below show the inheritance of sickle-cell disease (described in Modules 9.14 and 9.15), which is caused by an autosomal recessive allele. In the first pedigree, the square and circle symbols are colored, as far as genotypes are known. Fill in the genotypes— SS , Ss , or ss —below the symbols. Use question marks to denote unknown genotypes. Complete the second pedigree by coloring in the symbols, following the rules described in Module 9.8. Again denote unknowns with question marks.

Exercise 8 (Module 9.9)

This module discusses common human genetic diseases and their inheritance. Indicate whether each of the statements below is true or false, and change false statements to make them true.

- _____ 1. Cystic fibrosis is the most common lethal genetic disease in the United States.
- _____ 2. A genetic disorder is expected in half the children of two carriers of a recessive allele.
- _____ 3. About 50 human genetic disorders are known to be inherited as Mendelian traits.
- _____ 4. Most people afflicted with genetic disorders are born to afflicted parents.
- _____ 5. Most serious human genetic disorders are recessive.
- _____ 6. Cystic fibrosis is most common among Asian Americans.
- _____ 7. Most genetic diseases are evenly distributed among ethnic groups.
- _____ 8. Most societies have taboos and laws against marriage between close relatives.
- _____ 9. Half of the offspring of two carriers of a recessive allele are likely to be carriers.
- _____ 10. Dominant alleles are always more common in the population than recessive alleles.
- _____ 11. Tay-Sachs disease is seen among Jews from Central Europe.
- _____ 12. Lethal dominant alleles are much more common than lethal recessive alleles.
- _____ 13. Achondroplasia is a form of dwarfism.
- _____ 14. Geneticists agree that inbreeding always increases the risk of inherited diseases.
- _____ 15. Huntington's disease is lethal, but it does not strike until middle age.
- _____ 16. Symptoms of PKU include excess mucus in the lungs and digestive tract.
- _____ 17. Extra fingers and toes is a dominant trait.
- _____ 18. Sickle-cell disease is common among African Americans.

Exercise 9 (Modules 9.9 – 9.10; 9.15)

Greg and Amy were excited and happy that she was pregnant, but their joy was mixed with anxiety. The couple had just received some bad news: Greg's sister had just given birth to a baby boy diagnosed with cystic fibrosis. Greg and Amy were at the clinic for genetic ¹ _____ to discuss the possibility that Greg was a ² _____ of cystic fibrosis and to determine their unborn child's chances of inheriting the disease.

Sharon, the genetic counselor, reviewed Amy's and Greg's family histories. She said, "Our first priority is to figure out whether the two of you are carriers. We knew that Amy could be, because her brother died of cystic fibrosis, but until Greg's nephew was diagnosed, we didn't know that there was CF in his family, too. Greg, if your sister is a carrier, you could be as well."

Amy interjected, "What does this mean for us and for our baby?"

"It means that you and Greg need to be tested for the cystic fibrosis allele. If you both are carriers, then we can talk about ³ _____ testing to determine whether your baby might have it."

Later that day, a technician withdrew blood for the tests, and the following week, Amy and Greg were back in the genetic counselor's office. Sharon breezed through the door. "You're in the clear for cystic fibrosis," she said matter-of-factly.

"What?"

"The CF tests were both negative: Neither of you are carriers. Plus, the ⁴ _____ of Amy's blood was fine—there doesn't appear to be much chance of a neural tube defect."

Greg and Amy both sighed with relief.

Then Sharon's expression became a bit more serious. "Unfortunately, we did find something else that concerns me. Besides testing for the CF allele, we did a routine screen for several other disorders, including ⁵ _____ disease—even though you are not Jewish—and PKU. Turns out you both are carriers for PKU."

Amy groaned, "Oh no."

Sharon quickly added, "Don't worry yet. Even though you are both carriers, the probability that the baby will have the disease is only ⁶ _____ ."

Amy asked, "What exactly is PKU? Is it a serious problem?"

Sharon explained that PKU, short for ⁷ _____, is an inherited inability to break down an ⁸ _____ called phenylalanine. "The phenylalanine can build up in the blood and cause mental retardation. As I said, don't start worrying yet. We can test your fetus. If PKU is detected early, retardation can be prevented by putting the child on a special ⁹ _____, low in phenylalanine."

Amy asked, "How will you test the baby?"

"We'll have to perform ¹⁰ _____—taking a sample of the ¹¹ _____ fluid. We can check for PKU by testing for certain chemicals in the fluid itself. While we're at it we will culture some of the fetal ¹² _____ from the fluid and do a ¹³ _____—take a picture of the chromosomes—to check for ¹⁴ _____ syndrome. It will take a couple of weeks to culture the cells. Or we could get the karyotype results right away by using a newer technique called ¹⁵ _____ sampling. The placenta cells we sample with this technique are ¹⁶ _____ more rapidly, so—"

Greg interrupted. "Wait a minute. Do you have to get samples? Can't you just do ¹⁷ _____ imaging to look at the baby? Doctor Portillo did that before Kelly was born."

"We really can't check chromosomes or PKU by just looking at the fetus with ultrasound. Amy is over ¹⁸ _____ years old, so I think it is important to get a sample of amniotic fluid so we can check for Down syndrome. I'm sure everything will be okay, but it's best to be prepared. Plus, the karyotype will answer another question I'm sure you are eager to know the answer to—whether you are going to have a boy or a girl."

Exercise 10 (Modules 9.11 – 9.16)

Web/CD Activity 9D *Incomplete Dominance*

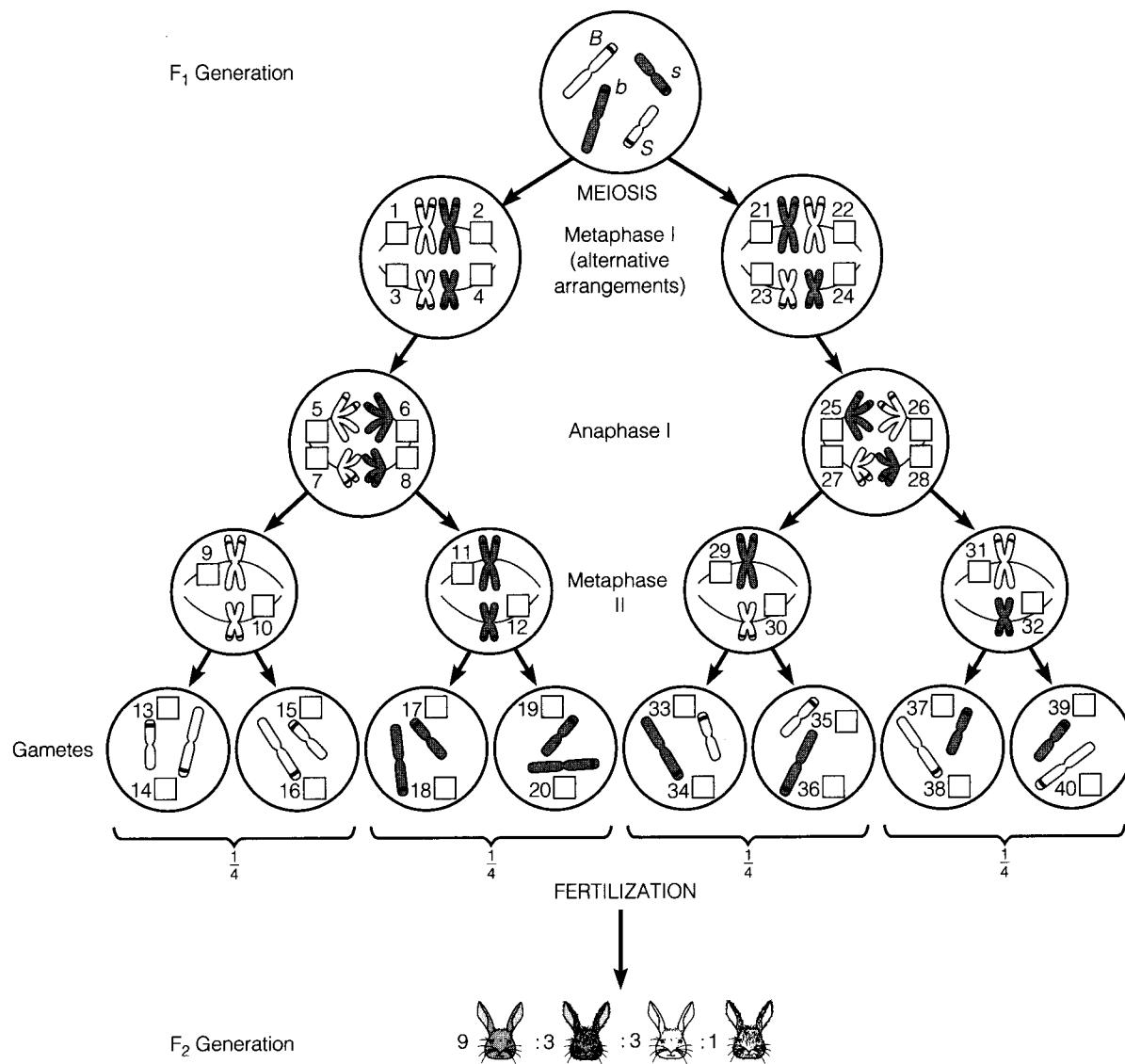
These modules discuss examples of inheritance that are a bit more complex than the simple patterns of heredity observed by Mendel. After reading the modules, see if you can match each description with a pattern of inheritance. Choose from:

- A. incomplete dominance
- B. multiple alleles
- C. codominance
- D. pleiotropy
- E. polygenic inheritance

- 1. There are three different alleles for a blood group— I^A , I^B , and i —but an individual has only two at a time.
- 2. Crosses between two cremello (off-white) horses always produce cremello offspring. Crosses between chestnut (brown) horses always result in chestnut offspring. A cross between chestnut and cremello horses produces palomino (a golden-yellow color somewhat intermediate between chestnut and cremello) offspring. If two palominos are mated, their offspring are produced in the ratio of 1 chestnut : 2 palominos : 1 cremello.
- 3. The sickle-cell allele, s , is responsible for a variety of phenotypic effects, from pain and fever to damage to the heart, lungs, joints, brain, or kidneys.
- 4. In rabbits, an allele for full color (C) is dominant over an allele for chinchilla (c') color. Both full color and chinchilla are dominant over the white allele (c). A rabbit can be CC , Cc' , Cc , $c'c'$, $c'c$, or cc .
- 5. In addition to the A and B molecules found on the surface of red blood cells, humans also have M and N molecules. The genotype $L^M L^M$ produces the M phenotype. The genotype $L^N L^N$ gives the N phenotype. Individuals of genotype $L^M L^N$ have both kinds of molecules on their red blood cells, and their phenotype is MN.

- ____ 6. If a red shorthorn cow is mated with a white bull, all their offspring are roan, a phenotype that has a mixture of red and white hairs.
- ____ 7. Independent genes at four different loci are responsible for determining an individual's HLA tissue type, important in organ transplants and certain diseases.
- ____ 8. A recessive allele causes a human genetic disorder called phenylketonuria. Homozygous recessive individuals are unable to break down the amino acid phenylalanine. As a consequence, they have high levels of this substance in their blood and urine, reduced skin pigmentation, lighter hair than their normal brothers and sisters, and often some degree of mental impairment.
- ____ 9. When graphed, the number of individuals of various heights forms a bell-shaped curve.
- ____ 10. Chickens homozygous for the black allele are black, and chickens homozygous for the white allele are white. Heterozygous chickens are gray.

Exercise 11 (Module 9.16)


Genetic testing, or screening, is a rapidly growing component of health care. Match each of the following descriptions with a category of genetic tests.

- ____ 1. Confirms or rules out whether an individual has a particular genetic disorder
- ____ 2. Helps determine a person's risk for developing a particular disorder in the future
- ____ 3. Determines whether an individual has a potentially harmful recessive allele
- ____ 4. Catches inherited disorders immediately after birth

- A. newborn screening
- B. diagnostic testing
- C. prediction testing
- D. carrier testing

Exercise 12 (Module 9.17)

Genes are located on chromosomes. Genes undergo segregation and independent assortment because the chromosomes that carry them undergo segregation and independent assortment during meiosis. The illustration below is similar to that in Module 9.17. It shows how alleles and chromosomes are arranged in an F_1 rabbit and how meiosis sorts the alleles into their gametes. The diagram below shows only the chromosomes. Put a letter (B , b , S , or s) in each of the numbered boxes to show how segregation and independent assortment of chromosomes cause segregation and independent assortment of alleles.

Exercise 13 (Modules 9.18 – 9.20)**Web/CD Activity 9E Linked Genes and Crossing Over**

These three modules discuss the inheritance of linked genes—genes on the same chromosome. Their pattern of inheritance is inconsistent with Mendel's "rules," but they illustrate important principles of chromosome structure and behavior. After reading the modules, match each of the observations below with the statement that explains the observation. Take your time; this exercise is not easy.

Observations

- 1. When two heterozygous round yellow peas are crossed, their offspring are produced in a 9:3:3:1 ratio (9 round yellow : 3 round green : 3 wrinkled yellow : 1 wrinkled green).
- 2. When two peas heterozygous for purple flowers and long pollen are crossed, the expected 9:3:3:1 ratio is not seen. The ratio is close to 3 purple long : 1 red round. Similarly, when a fruit fly with red eyes and long wings ($SsCc$) is crossed with a fly with scarlet eyes and curled wings ($sscc$), offspring are not produced in the expected 1:1:1:1 ratio. Most offspring are red long and scarlet curled.
- 3. When two heterozygous purple long peas are crossed, most of their offspring are purple and long or red and round. But a very small number of offspring are purple and round or red and long. Similarly, when the $SsCc$ and $sscc$ fruit flies are mated, nearly all their offspring are $SsCc$ and $sscc$. However, a small number of offspring (about 6% of the total) are $Sscc$ and $ssCc$.
- 4. When a fruit fly with red eyes and long wings ($SsCc$) is crossed with a fly with scarlet eyes and curled wings ($sscc$), 94% of their offspring are $SsCc$ and $sscc$, and 6% are $Sscc$ and $ssCc$. In other words, the recombination frequency between the s and c alleles is 6%. When a fly with red eyes and pale body ($SsEe$) is crossed with a fly with scarlet eyes and ebony body, 27% of their offspring are $Ssee$ and $ssEe$. The recombination frequency between alleles s and e is 27%.
- 5. When a fly with long wings and pale body ($CcEe$) is crossed with a fly with curled wings and ebony body ($ccee$), 21% of their offspring are $Ccee$ and $ccEe$. The recombination frequency between alleles c and e is 21%.

Explanations

- A. The greater the distance between two genes, the greater the opportunity for crossing over to occur between them. If crossing over is more likely, more recombinant offspring will result. If two genes are farther apart, the recombination frequency will be greater between them.
- B. Pairs of alleles on different chromosomes segregate independently during gamete formation. They follow Mendel's principle of independent assortment. In other words, genes for different traits on different chromosomes do not tend to "stick together" when passed on to offspring.
- C. If two genes are on the same chromosome, or linked, they tend to be inherited together. Alleles on the same chromosome do not segregate independently. They tend to "stick together," violating Mendel's principle of independent assortment.
- D. Recombination frequencies can tell you how far apart genes are on a chromosome. If you know the distance from a to b , the distance from a to c , and the distance from b to c , you can map the sequence of genes on the chromosome.
- E. Homologous chromosomes cross over during meiosis and exchange segments. This recombines linked genes into assortments not seen in the parents.

Exercise 14 (Module 9.21)

What determines an individual's sex? Sex is generally determined by genes and chromosomes, but the process of sex determination works differently in different species. Match each group of organisms below with their system of sex determination.

A. Most plants, including peas, corn	1. Females are ZW, males ZZ.
B. Humans, fruit flies, some plants	2. Females are diploid, males haploid.
C. Ants, bees	3. Females are XX, males XO (one X).
D. Earthworms, snails	4. Hermaphroditic; all produce eggs and sperm.
E. Some butterflies, birds, fishes	5. Females are XX, males XY.
F. Grasshoppers, crickets, roaches	6. Monoecious; all produce both eggs and sperm.

Exercise 15 (Modules 9.22 – 9.23)**Web/CD Activity 9F Sex-Linked Genes**

Genes located on the sex chromosomes—called sex-linked genes—determine many traits unrelated to maleness or femaleness. Red-green color blindness is a recessive sex-linked trait in humans. After reading Modules 9.22 and 9.23, see if you can describe the inheritance of color blindness by filling in the blanks below.

The genes for normal color vision and red-green color blindness, like most human sex-linked traits, are carried on the ¹_____ chromosome. A capital letter *C* represents the ²_____ allele for normal vision; a small *c* represents the color-blindness allele. A male with normal color vision has the genotype ³_____. (Because these genes are carried on the X chromosome, their symbols are shown as superscripts on the letter X.) A color-blind male has the genotype ⁴_____.

A color-blind male will transmit the allele for color blindness to all his ⁵_____ but none of his ⁶_____. This is because only his daughters inherit his ⁷_____ chromosome, and only his ⁸_____ chromosome is passed to all his sons. All the children of a color-blind male and a homozygous dominant female will have normal color vision. Their sons will inherit only the normal vision allele, but their daughters will be ⁹_____ of the color-blindness allele, thus possessing the genotype ¹⁰_____.

A heterozygous female carrier transmits the color-blindness allele to ¹¹_____ of her offspring. If she and a male with normal vision have children, ¹²_____ of their sons will be normal and ¹³_____ will be color blind. ¹⁴_____ of their daughters will be normal, because they inherit at least one dominant allele from their ¹⁵_____. But half these daughters will be ¹⁶_____ of the color-blindness trait, because they inherit the color-blindness allele from their mother.

Color blindness is much more common in men than in women. If a man inherits a single color-blindness allele from his ¹⁷_____, the gene will be expressed and he will be color blind. Because a man has only one ¹⁸_____ chromosome, whatever genes it carries are seen in the man's phenotype. If a woman inherits just

one color-blindness allele, she has relatively normal vision, because the dominant normal allele on her other X chromosome masks most of the effects of the color-blindness allele. For a woman to be color blind, she would have to inherit ¹⁹ _____ alleles from both her mother and her father, which is much less likely.

Testing Your Knowledge

Multiple Choice

- How did Mendel's studies in genetics differ from earlier studies of breeding and inheritance?
 - Mendel worked with plants; earlier studies used animals.
 - Mendel was able to explain the "blending" hypothesis.
 - Mendel's work was more quantitative.
 - Mendel worked with wild species, not domesticated ones.
 - Mendel found that offspring inherit characteristics from both parents.
- A true-breeding fruit fly would be _____ for a certain characteristic.
 - homozygous dominant
 - homozygous recessive
 - heterozygous
 - Any of the above can be true-breeding.
 - a or b
- When looking at the inheritance of a single characteristic, Mendel found that a cross between two true-breeding peas (between purple and white, for example) always yielded a _____ in the F_2 generation.
 - 1:1 phenotypic ratio
 - 3:1 genotypic ratio
 - 1:2:1 phenotypic ratio
 - 3:1 phenotypic ratio
 - 1:1 genotypic ratio
- Alternative forms of genes for a particular characteristic are called
 - homologous chromosomes.
 - alleles.
 - linked genes.
 - genotypes.
 - phenotypes.
- A fruit fly has two genes for eye color, but each of its sperm cells has only one. This illustrates
 - independent assortment.
 - linked genes.
 - pleiotropy.
 - polygenic inheritance.
 - segregation.
- Mendel made some crosses where he looked at two characteristics at once—round yellow peas crossed with wrinkled green peas, for example. He did this because he wanted to find out
 - how new characteristics originated.
 - whether different characteristics were inherited together or separately.
 - how plants and animals adapt to their environments.
 - whether the characteristics influence each other—whether color affects degree of roundness, for example.
 - Actually, Mendel never had a clear purpose in mind.
- A pea plant with purple flowers is heterozygous for flower color. Its genotype is Pp . The P and p alleles in the pea plant's cells are located
 - next to each other on the same chromosome.
 - at corresponding locations on homologous chromosomes.
 - on the X and Y chromosomes.
 - some distance apart on the same chromosome.
 - at different locations on homologous chromosomes.
- When an individual has both I^A and I^B blood group alleles, both genes are expressed and the individual has group AB blood. This is an example of
 - codominance.
 - a dihybrid.
 - pleiotropy.
 - incomplete dominance.
 - linked genes.

9. How many genes are there on one chromosome?

- one
- two
- hundreds
- thousands
- millions

10. Which of the following is *not* true of linked genes?

- They tend to be inherited together.
- They violate Mendel's principle of independent assortment.
- They are on the same chromosome.
- They can form new combinations via crossing over.
- They are relatively rare; most genes are unlinked.

11. Morgan and his students were able to map the relative positions of genes on fruit-fly chromosomes by

- coloring chromosomes with dyes and observing them under a microscope.
- scrambling the chromosomes and observing how the flies changed.
- crossing various flies and looking at the proportions of offspring.
- transplanting chromosomes from one fly to another.
- looking at crosses that showed independent assortment.

12. The sex chromosomes of a human female are _____. The sex chromosomes of a human male are _____.

- XX . . . XY
- YY . . . XX
- XX . . . YY
- XY . . . XX
- YY . . . XY

13. Most sex-linked traits in humans are carried on the ____ chromosome, and the recessive phenotypes are seen most often in _____.

- X . . . women
- X . . . men
- Y . . . women
- Y . . . men

14. The most common lethal genetic disease in the United States is

- sickle-cell disease.
- cystic fibrosis.
- Huntington's disease.
- hemophilia.
- PKU.

15. Which of the following human genetic disorders is sex linked?

- hemophilia
- PKU
- cystic fibrosis
- sickle-cell disease
- all of the above

16. There are various procedures that can be used to detect genetic disorders before birth. Among the tests discussed in this chapter, ____ is the least invasive, while ____ carries the highest risk.

- chorionic villus sampling . . . amniocentesis
- ultrasound imaging . . . fetoscopy
- fetoscopy . . . chorionic villus sampling
- fetoscopy . . . amniocentesis
- ultrasound imaging . . . chorionic villus sampling

Essay

- Explain why Gregor Mendel was able to figure out the principles of heredity, while many other investigators before (and some after) Mendel failed to do so.
- If you flip two coins, the probability that you will get two heads is $\frac{1}{4}$, but the probability that you will get one head and one tail is $\frac{1}{2}$. Explain why.
- Why are organisms such as peas and fruit flies better subjects for genetics studies than human beings?
- What determines a human's sex? Describe two other systems of sex determination in different organisms.

Applying Your Knowledge

Multiple Choice

- A brown mouse is mated with a white mouse. All of their offspring are brown. If two of these brown offspring are mated, what fraction of their offspring will be white?
 - all
 - none
 - $\frac{1}{4}$
 - $\frac{1}{2}$
 - $\frac{3}{4}$

2. Suppose you wanted to know the genotype of one of the brown F_2 mice in question 1. The easiest way to do it would be to

- keep careful records of the parent mice.
- mate it with a brown mouse.
- mate it with a mouse of its own genotype.
- mate it with a white mouse.
- It can't be done.

3. Some dogs bark while trailing; others are silent. The barker gene is dominant, the silent gene recessive. The gene for normal tail is dominant over the gene for screw (curly) tail. A barker dog with a normal tail who is heterozygous for both characteristics is mated to another dog of the same genotype. What fraction of their offspring will be barkers with screw tails?

- $\frac{3}{4}$
- $\frac{5}{6}$
- $\frac{3}{6}$
- $\frac{1}{4}$
- $\frac{1}{6}$

4. Two heterozygous tall pea plants with purple flowers are crossed. The probability that one of their offspring will have white flowers is $\frac{1}{4}$. The probability that one of their offspring will be short is $\frac{1}{4}$. What is the probability that one of their offspring will be short with white flowers?

- 0
- $\frac{1}{6}$
- $\frac{1}{8}$
- $\frac{1}{4}$
- $\frac{1}{2}$

5. A young unmarried woman had a baby and wished to collect child support from the father. Her blood group is AB. The baby's blood group is A. There are two possible fathers: Jim is group A, and Michael is group O. Which man could be the father?

- either
- Jim
- Michael
- neither
- impossible to tell given this evidence

6. Which of the following illustrates pleiotropy?

- In fruit flies, the genes for scarlet eyes and hairy body are located on the same chromosome.
- Matings between earless sheep and long-eared sheep always result in short-eared offspring.

7. Wheat kernels can range from white to red in color, a trait controlled by several genes.

8. The human cystic fibrosis gene causes many symptoms, from respiratory distress to digestive problems.

9. An individual with both I^A and I^B alleles has blood group AB.

10. When two gray-bodied fruit flies are mated, their offspring total 86 gray-bodied males, 81 yellow-bodied males, and 165 gray-bodied females. The allele for yellow body is

- sex-linked and dominant.
- not sex-linked and dominant.
- sex-linked and recessive.
- not sex-linked and recessive.
- impossible to say on the basis of this information.

11. In fruit flies, the allele for red eyes is dominant, and the allele for purple eyes is recessive. Normal gray body is dominant, and black body is recessive. A geneticist mated a heterozygous red-gray male with a purple-black female. She predicted that there would be four phenotypes of offspring in equal numbers, but she was wrong. Instead, 48% of the offspring were red-gray, 46% were purple-black, 3% were red-black, and 3% were purple-gray. She concluded that in the male, the red and gray genes were linked, and in the female the purple and black genes were linked. If this is the case, how would you account for the red-black and purple-gray offspring?

- This is an example of pleiotropy.
- Body color and eye color are quantitative characteristics.
- Crossing over during meiosis recombined the genes.
- This cross shows incomplete dominance at work.
- Segregation of alleles occurred during meiosis.

12. Red-green color blindness is a human recessive sex-linked trait. A man and a woman with normal vision have a color-blind son. What is the probability that their next child will also be a color-blind son?

- 0
- $\frac{1}{6}$
- $\frac{1}{4}$
- $\frac{1}{2}$
- $\frac{3}{4}$

10. On a pedigree tracing the inheritance of PKU, a horizontal line joins a black square and a half-black circle. What fraction of this couple's children would you expect to suffer from PKU?

- none
- $\frac{1}{4}$
- $\frac{1}{2}$
- $\frac{3}{4}$
- all

11. Duchenne muscular dystrophy is caused by a sex-linked recessive allele. Its victims are almost invariably boys, who usually die before the age of 20. Why is this disorder almost never seen in girls?

- Sex-linked traits are never seen in girls.
- The allele is carried on the Y chromosome.
- Nondisjunction occurs in males but not in females.
- Males carrying the allele don't live long enough to be fathers.
- A sex-linked allele cannot be passed on from mother to daughter.

12. Which of the following would be most useful for preventing a particular genetic disorder?

- knowing how the allele causes its phenotypic effects
- being able to identify carriers
- a test that can determine whether a fetus suffers from the disorder
- knowing which chromosome bears the allele that causes the disorder
- tracing the trait back through parents and grandparents

Essay

- Two apparently normal parents have a daughter who suffers from agammaglobulinemia, an inherited defect of the immune system, which is supposed to protect the body from infection. Use a Punnett square to show how two normal parents could have a child afflicted with an inherited disease. What are the parents' genotypes? The daughter's genotype? What is the probability that their second child will also have agammaglobulinemia?
- A pea plant with purple flowers and green pods is crossed with a plant that has white flowers and yellow pods. All the offspring have purple flowers and green pods. If two of these F_1 peas are crossed, what phenotypes

will be seen in the F_2 generation, and in what proportions?

- Freckles is dominant, no freckles recessive. A man with freckles and a woman with no freckles have three children with freckles and one with no freckles. What are the genotypes of the parents and children?
- The inheritance of flower color in snapdragons illustrates incomplete dominance: When a red snapdragon is crossed with a white one, all their offspring are pink. What offspring would be produced, in what proportions, if two of these pink snapdragons were crossed? What offspring would be produced, in what proportions, if a pink snapdragon was crossed with a white one?
- A man whose blood group is A and a woman whose blood group is B have a son whose blood group is O. What are their genotypes? What is the probability of the couple's next child having blood group B?
- Recall that some characteristics, such as skin color, appear to be controlled by several genes. This creates a continuum of variation. If this polygenic explanation for the inheritance of human skin pigmentation is correct, how do the skin colors of the following four individuals compare? Which of the couples could have children with the widest range of skin colors? Why? Couple 1: $aaBbCC$ and $aaBbCC$. Couple 2: $AaBbCc$ and $AaBbCc$.
- In fruit flies, the allele for red eyes is dominant over the allele for pink eyes. Straight wings is dominant over curled wings. Imagine that a red-eyed, straight-winged fly that is heterozygous for both characteristics is mated with a fly with pink eyes and curled wings. Predict the offspring that would be produced by this cross (genotypes, phenotypes, and fraction of each) if these two genes were on different chromosomes.
When a geneticist actually carried out this mating, the offspring were as follows: 49% red eyes and straight wings, 49% pink eyes and curled wings, 1% red eyes and curled wings, and 1% pink eyes and straight wings. Does this agree with your prediction? How would you explain these results?

8. Numerous fruit-fly matings show that the *h* allele for hairy body, the *b* allele for spineless bristles, and the *s* allele for striped body are all located on the same chromosome. The recombination frequency between alleles *h* and *b* is 4%. The recombination frequency between alleles *s* and *b* is 15%. Why are the recombination frequencies between *h* and *b* and between *s* and *b* different? The recombination frequency between alleles *h* and *s* is 10%. What is the order of these three genes on the chromosome?
9. In humans, the presence of a fissure (gap) in the iris of the eye (called "coloboma iridis") is due to a sex-linked recessive gene. Show how an apparently normal couple could have a child with this condition. Is the affected child more likely to be a boy or a girl?
10. Imagine that you are a genetic counselor, and a couple that is planning to have children comes to you for advice. Diane's brother has hemophilia. There is no history of hemophilia in Craig's family. What is the probability that their child will have hemophilia? (Recall that hemophilia is caused by a sex-linked recessive allele.)

Extending Your Knowledge

1. Gregor Mendel and Thomas Hunt Morgan were two of the more colorful figures in the history of biology. You may want to look them up in an encyclopedia or seek out their biographies in the library.
2. If you live near your biological family, try to figure out the patterns of inheritance of some of the characteristics mentioned in Module 9.8 among your parents and siblings.
3. Is there any record of a genetic disorder in your family? Which one? How is it inherited? If you are able to collect data from your family, you might find it interesting to construct a pedigree for this genetic disorder. Alternatively, you could construct a pedigree for one of the simple human genetic traits illustrated in this chapter.